Disjunctive Conic Cuts for Mixed Integer Second Order Cone Optimization

نویسندگان

  • Pietro Belotti
  • Julio C. Góez
  • Imre Pólik
  • Tamás Terlaky
  • Ted K. Ralphs
چکیده

We investigate the derivation of disjunctive conic cuts for mixed integer second order cone optimization (MISOCO). These conic cuts characterize the convex hull of the intersection of a disjunctive set and the feasible set of a MISOCO problem. We present a full characterization of these inequalities when the disjunctive set considered is defined by parallel hyperplanes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A conic representation of the convex hull of disjunctive sets and conic cuts for integer second order cone optimization

We study the convex hull of the intersection of a convex set E and a disjunctive set. This intersection is at the core of solution techniques for Mixed Integer Convex Optimization. We prove that if there exists a cone K (resp., a cylinder C) that has the same intersection with the boundary of the disjunction as E , then the convex hull is the intersection of E with K (resp., C). The existence o...

متن کامل

Mixed integer programming with a class of nonlinear convex constraints

We study solution approaches to a class of mixed-integer nonlinear programming problems that arise from recent developments in risk-averse stochastic optimization and contain second-order and p-order cone programming as special cases. We explore possible applications of some of the solution techniques that have been successfully used in mixed-integer conic programming and show how they can be g...

متن کامل

A complete characterization of disjunctive conic cuts for mixed integer second order cone optimization

We study the convex hull of the intersection of a disjunctive set defined by parallel hyperplanes and the feasible set of a mixed integer second order cone optimization (MISOCO) problem. We extend our prior work on disjunctive conic cuts (DCCs), which has thus far been restricted to the case in which the intersection of the hyperplanes and the feasible set is bounded. Using a similar technique,...

متن کامل

On Valid Inequalities for Mixed Integer p-Order Cone Programming

We discuss two families of valid inequalities for linear mixed integer programming problems with cone constraints of arbitrary order, which arise in the context of stochastic optimization with downside risk measures. In particular, we extend the results of Atamtürk and Narayanan (Math. Program., 2010, 2011), who developed mixed integer rounding cuts and lifted cuts for mixed integer programming...

متن کامل

Forthcoming in Mathematical Programming CONIC MIXED-INTEGER ROUNDING CUTS

A conic integer program is an integer programming problem with conic constraints. Many problems in finance, engineering, statistical learning, and probabilistic optimization are modeled using conic constraints. Here we study mixed-integer sets defined by second-order conic constraints. We introduce general-purpose cuts for conic mixed-integer programming based on polyhedral conic substructures ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015